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ABSTRACT 

American Southwest (ASW) megadroughts represent decadal-scale periods of dry conditions, 

the near-term risks of which arise from natural low-frequency hydroclimate variability and 

anthropogenic forcing. A large single-climate-model ensemble indicates anthropogenic 

forcing increases near-term ASW megadrought risk by a factor of 100, however, accurate risk 

assessment remains a challenge. At the global-scale we find that anthropogenic forcing may 

alter the variability driving megadroughts over 55% of land-areas, undermining accurate 

assessments of their risk. For the remaining areas, current ensembles are too small to 

characterize megadroughts‟ driving variability. For example, constraining uncertainty in 

near-term ASW megadrought risk to 5 percentage points with high confidence requires 287 

simulations. Such ensemble sizes are beyond current computational and storage resources and 

these limitations suggest that constraining errors in near-term megadrought risk projections 

with high confidence—even in places where underlying variability is stationary—is not 

currently possible.  
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1. INTRODUCTION 

Decadal-to-multidecadal periods of meteorological drought  (hereinafter drought will 

be used to refer to meteorological drought), or megadroughts, are a robust feature of the 

Common Era paleoclimate record, particularly in the American Southwest (ASW—32°N-

41°N; 125°W-105°W; e.g. Cook et al. 2016). Quantifying the risk of a megadrought 

occurring in the future is critical: past megadroughts in the ASW, for instance, were 

sufficiently intense to decrease the Colorado basin‟s runoff by 15% on multidecadal 

timescales (Meko et al. 2007). If such a drought were to occur again, it would greatly affect 

water availability and present stresses for people and ecosystems. At the same time, 

megadroughts represent natural hydroclimate change on the very timescales over which 

projections of future hydroclimate are made to inform decision-making (e.g. IPCC AR5—

Stocker et al. 2014).  

Hydroclimate conditions at the end of the 21st century are likely to be dominated by 

anthropogenic radiative forcing, with severe drying projected for the ASW (Cook et al. 

2014a; 2015). Over the near-term decades, however, hydroclimate change will involve a 

significant contribution from low-frequency internal variability, which likely played a role in 

driving real-world megadroughts (e.g. Coats et al., 2016, Ault et al., 2014, 2015, Woodhouse 

and Lukas, 2006, Ho et al., 2016). The varied ways in which anthropogenic forcing and 

internal variability could interact over the coming decades will determine near-term future 

hydroclimate (e.g. Mankin et al., 2015), and therefore, megadrought risk.  

Accurately projecting near-term future megadrought risk necessitates estimating the 

frequency of megadrought occurrence from climate models forced with the most likely future 

trajectories of exogenous boundary conditions. Complicating this estimate over the near-term 

future, however, are two issues: First, is whether climate models can simulate megadroughts 

with the correct atmosphere-ocean dynamical drivers (e.g. Coats et al. 2013; 2015; Ault et al. 
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2013; 2014). Second, megadroughts are necessarily rare events. Estimating future 

megadrought risk, therefore, requires a robust characterization of the future mean and 

variability in hydroclimate. 

“Large” ensembles of a single climate model represent a new tool motivated, in part, 

by the goal of having an ensemble large enough to robustly sample internal variability in a 

nonstationary climate (Kay et al. 2015; Deser et al. 2012). In the context of estimating future 

megadrought risk, for instance, a large ensemble should allow for a robust characterization of 

both mean hydroclimate and the distribution around this mean in the future—with the caveat 

that such an ensemble can only characterize that model‟s representation of the climate 

system. Importantly, producing a large ensemble requires considerable computational and 

storage resources, with each additional ensemble member in the National Center for 

Atmospheric Research (NCAR) Community Earth System Model (CESM) large ensemble 

project taking three weeks to run on their Yellowstone supercomputer (e.g., Kay et al. 2015). 

This considerable computational expense necessitates an understanding of the number of 

simulations required to robustly sample internal variability in different climate variables and 

on different timescales.  

Along these lines, recent work suggests that a statistically-derived ensemble based on 

the statistical moments of an unforced control simulation can produce the same range of 

future precipitation and temperature trends as a forced large single-model ensemble 

(Thompson et al. 2015). Such a conclusion, however, is predicated on a problematic 

assumption: It assumes that the statistics of internal variability in the future will be the same 

as in the present. Yet there is evidence that forcing can project onto internal modes of 

variability (e.g. Palmer 1993, Cai et al. 2014, 2015), violating this assumption. Projections 

from process-based large single-model ensembles, on the other hand, are dynamically 

derived, allowing for nonstationary internal variability. These model-based projections also 
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provide information on the atmosphere-ocean dynamics underlying climate features—which 

may change in the future even if the statistics of internal variability are unchanged. Finally, if 

we regard the single-model ensemble mean as the model‟s „forced response‟ (e.g., Deser et 

al. 2012; Thompson et al. 2015), then the estimate of the forced response itself is a function 

of the number of ensemble members included in its calculation. Large single-model 

ensembles thus provide a more robust estimate of a model‟s forced response.  

Given this context, projections from large single-model ensembles are clearly 

valuable and we leverage such an ensemble (Kay et al. 2015) in a perfect model framework, 

which uses variability in a long unforced model simulation as ground truth, to analyze the 

challenge of accurately estimating future megadrought risk. Specifically, we ask three related 

questions: (1) Where do the statistics of internal hydroclimate variability remain unchanged 

with forcing (i.e., where do the assumptions of a perfect model framework hold)? (2) For 

places where the perfect model framework‟s assumptions hold, how many model ensemble 

members are necessary to accurately estimate future megadrought risk? And (3) What is the 

marginal value of each additional model ensemble member towards accurately estimating 

future megadrought risk? We answer these questions by analyzing future megadrought risk in 

the ASW, but also generalize our results globally for those locations where the perfect model 

framework applies (see Methods section 2.3). Given uncertainties in our physical 

understanding of real-world megadroughts, however, these questions can only inform our 

understanding of the size of contemporary model ensembles and highlight the difficulties of 

using these ensembles to project future megadrought risk. 
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2. METHODS 

2.1 Climate model data 

All model output is from the NCAR CESM Large Ensemble project (hereinafter 

LENS, Kay et al. 2015). We utilize 30 LENS ensemble members over the period 2006-2040 

C.E., as well as the full 1100-year CESM control simulation (hereinafter the CESM control 

simulation). The former runs employ the RCP8.5 emissions scenario of the Coupled Model 

Intercomparison Project phase 5 (“CMIP5”, Taylor et al. 2012). Uncertainty in our physical 

understanding of real-world megadroughts precludes a validation of megadroughts within the 

model. Nevertheless, Figure S1 provides a validation of temperature and precipitation over 

the ASW. The climatology and variability of temperature and precipitation over the ASW, as 

well as teleconnections to the ASW are well produced by the NCAR CESM. 

2.2 Megadrought estimation 

The hydroclimate variable used herein is the Palmer Drought Severity Index (PDSI, 

Palmer 1965), which was chosen to maintain consistency with both the paleoclimate record 

of hydroclimate over North America (Cook et al. 2007; Cook et al. 2014b) and previous 

studies (Cook et al. 2014a; 2015). PDSI is an offline estimate of soil moisture balance, and 

has been established as a robust estimator of soil moisture variability that compares well to 

other soil moisture metrics (e.g. the Standardized Precipitation Evapotranspiration Index 

(SPEI), Vicente Serrano et al. 2010; Cook et al. 2014a) and model soil moisture (Cook et al. 

2014a; 2015; Smerdon et al. 2015). PDSI is calculated from supply via precipitation and 

losses due to evapotranspiration (ET), with ET estimated by means of scaling potential 

evapotranspiration (PET) using a beta function. PET is estimated herein using the Food and 

Agriculture Organization (FAO) of the United Nations (Allen et al. 1998) formulation of the 

Penman-Monteith (PM) function (Penman 1948; Xu and Singh 2002). Precipitation, surface 

pressure, surface temperature, vapor pressure and surface net radiation model fields are 
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utilized. Wind speed and ground heat flux are set to constant values of 1 and 0, respectively, 

because PDSI calculated using PM PET is not highly sensitive to them (Cook et al. 2014a). 

Soil moisture capacities are set at the standard values of 25.4 mm and 127 mm for the top and 

bottom layers. PDSI is calculated using this formulation for all 30 LENS ensemble members 

and the 1100-year CESM control simulation (years 400-1499) with all PDSI values 

standardized against the full CESM control simulation. Hydroclimate timeseries are produced 

by taking an area-weighted average of the grid point PDSI over the ASW (32°N-41°N; 

125°W-105°W) for the ASW results, and at the grid-point scale for the global results. 

Megadroughts in the PDSI timeseries are defined using the multidecadal megadrought 

definition of Ault et al. (2014), in which the 35-year mean is at least 0.5 standard deviations 

below the mean (for the ASW this is -0.99 PDSI). While Ault et al. (2014) use precipitation 

in their analyses, our megadrought definition is qualitatively consistent, with the main 

difference being the inherent 12-18 month memory timescale of PDSI. Using this definition 

megadrought risk is then the percent of 35-year periods with mean PDSI of less than -0.5 

standard deviations, with the standard deviation defined over the full CESM control 

simulation. Hereinafter mean PDSI over a 35-year period will be referred to as a 35-year 

hydroclimate state. 

2.3 Perfect model framework 

 A perfect model framework is used to answer questions (2) and (3) of the 

introduction. In particular, future megadrought risk is defined by calculating megadrought 

risk using all 35-year hydroclimate states from the CESM control simulation shifted by the 

mean of the 30 LENS ensemble members between 2006-2040 C.E. (an estimate of the 

CESM‟s forced response to RCP8.5). This will be the “perfect” baseline by which we 

determine if future megadrought risk has been accurately projected. Importantly, this 

definition of future megadrought risk assumes that statistics of internal variability are 
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unchanged in the future. To explicitly test this assumption we will use a two-sample 

Kolmogorov-Smirnov (K-S) test, a nonparametric test of the similarity of distributions. 

Specifically, the K-S test is used to compare the 35-year hydroclimate states from the CESM 

control simulation to the 35-year hydroclimate states (2006-2040 C.E.) from LENS. In a K-S 

test small p-values indicate that the null-hypothesis that the two samples come from 

populations with the same distribution can be rejected. Rejecting the null hypothesis implies 

that forced internal variability is different from unforced internal variability and the future 

megadrought risk as defined herein is likely incorrect. By consequence, for grid points or 

regions with p-values greater than 0.5, we do not attempt to answer questions (2) and (3) of 

the introduction. It is important to note that despite satisfying this criterion, the statistics of 

internal variability still may have changed at the analyzed grid points or regions. While it is 

not possible to project this source of error onto the analysis of megadrought risk, we caution 

that it could cause the answer to question (2) to be either too large or too small. A direct 

assessment of the impact of this issue over the ASW is included in Figure 3 and Section 3.3. 

2.4 Timeseries modeling 

The timeseries modeling we pursue is a means to test how the accuracy of 

megadrought risk estimation varies with ensemble size. We statistically generate many 

realizations of hydroclimate with random time evolutions but preserving the spectral 

characteristics, mean, and magnitude of the LENS. These timeseries are surrogate 

hydroclimate realizations with the same characteristics as the LENS. These surrogates allow 

estimates of the number of LENS ensemble members needed to accurately estimate future 

megadrought risk (defined using the perfect model framework, as described above). 

All timeseries modeling uses a power law rescaling of uncorrelated white noise 

following Ault et al. (2014) to match the LENS‟ spectral and statistical characteristics. This 

involves: (1) calculating the discrete Fourier transform of a white noise timeseries that has 
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been scaled to have the same variance as the LENS. (2) Rescaling the Fourier coefficients to 

be power-law distributed (with a predefined value of E) before taking the real part of the 

inverse Fourier transform. In this case E is determined by estimating the spectra of PDSI from 

each LENS member using the multitaper method (Thomson 1982) and then estimating the 

linear least squares fit in log-frequency, low-power space.  

3. RESULTS and DISCUSSION 

3.1 Perfect model framework and future megadrought in the ASW 

The CESM‟s pre-industrial climate (from the CESM control simulation) indicates no 

megadrought risk in the ASW (Methods section 2.2). Megadroughts are rare events, and thus 

might not be expected to occur in an 1100-year simulation. However, the lack of 

megadroughts may also be related to a wet bias over the ASW in the CESM model (Figure 

S1). Nevertheless, the 35-year hydroclimate states from the CESM control simulation are 

normally distributed, passing a Mann-Whitney test of normality at the 5% level. The area 

under the normal fit to these 35-year hydroclimate states less than -0.5 standard deviations of 

PDSI, i.e., the percentage of 35-year hydroclimate states that are expected to be 

megadroughts given an infinite sampling of the model‟s internal variability, gives 0.2%. 

Although the analyses herein represent a perfect model framework (Methods section 2.3), it 

is interesting to note that megadrought risk in the North American Drought Atlas (Cook et al. 

2014b), a tree-ring based reconstruction of hydroclimate variability over the Common Era, is 

1.0% in the ASW.  

 Fig. 1a shows the ten-bin histogram of mean hydroclimate over the period 2006-2040 

C.E. from LENS. Superposed on this histogram is the normal fit to the data (red) as well as 

the normal fit to the 35-year hydroclimate states from the CESM control simulation (Figure 

S2) shifted by the ensemble mean of the 30 LENS ensemble members between 2006-2040 

C.E. (blue). This latter distribution is the expected distribution of 35-year hydroclimate states 
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in the future given the model‟s internal variability superposed on the shift in mean 

hydroclimate produced by the RCP8.5 forcing scenario. Importantly, this is the expected 

future distribution of 35-year hydroclimate states if forcing does not project onto the internal 

modes of variability to make certain 35-year hydroclimate states more or less likely and thus 

represents the perfect model framework against which the LENS is compared. Using this 

perfect model framework suggests that anthropogenic forcing increases future megadrought 

risk in CESM from 0% to 23%. Interestingly, this large change in megadrought risk results 

almost entirely from a shift in the atmospheric demand for moisture (Figure S3), with very 

little impact of a change in the mean of precipitation. The two distributions in Fig. 1a are 

similar; nevertheless, small differences can lead to large errors in the estimate of future 

megadrought risk. In the LENS, for example, future megadrought risk is 20%. The absolute 

value of the difference between the perfect model framework and the LENS megadrought 

risk estimates is the error in future megadrought risk. Using this definition, the error in the 

LENS‟s future megadrought risk estimate is 3 percentage points (pp). 

There are three possible sources of this error: (1) the LENS may not be large enough 

(i.e. not enough ensemble members) to accurately estimate the distribution around the mean 

of 35-year hydroclimate states; (2) the differences in the distributions themselves can be the 

result of randomness; and/or most notably, (3) the forcing in LENS may have changed the 

distribution around the mean of 35-year hydroclimate states. The relationship between error 

and these three possible sources will be explored in the next section.  

3.2 Sources of error in megadrought risk estimates 

To test if forcing has projected onto internal modes of variability to change the 

distribution around the mean of 35-year hydroclimate states we will use the K-S test outlined 

in Methods section 2.3. The p-value in this case is 0.94, suggesting that the distribution 

around the mean of 35-year hydroclimate states is likely unchanged in the ASW in the future. 
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Given the lack of evidence for future changes to the statistics of internal variability in 

the ASW, the 35-year hydroclimate states from the CESM control simulation shifted by the 

ensemble mean of LENS between 2006-2040 C.E. (as in Fig. 1a) can be used to define future 

megadrought risk (Methods section 2.3). Congruent with this perfect model framework, we 

then ask how many LENS ensemble members are necessary to accurately estimate future 

megadrought risk. To do this we use ensembles of surrogate climate realizations, or 

timeseries (Methods section 2.4), to assess error in the estimation of future megadrought risk 

as a function of number of ensemble members from 20 to 300 (Fig. 1b). We calculate error as 

the absolute value of the difference in future megadrought risk estimated from each surrogate 

timeseries ensemble as compared to the future megadrought risk from the perfect model 

framework. The sets of surrogates will be produced 1000 times, however, and the percentile 

ranges of error will be recorded (Fig. 1b).  

For example, to constrain error in future megadrought risk for the ASW to 5 pp with 

median confidence requires 30 ensemble members. The error in future megadrought risk for 

the actual LENS is smaller than this despite the ensembles being the same size. This indicates 

that, by chance, the LENS is more successful at estimating future megadrought risk than 

would be expected given its size. In order to constrain error to 5 pp with a high-degree of 

confidence (95th percentile), would require 287 ensemble members. Such a target is 

unrealistic given the current state of computational and data storage resources. Additionally, 

the marginal value of an additional ensemble member to reducing error at every percentile 

range falls to nearly zero around 150 ensemble members, suggesting that for the purposes of 

accurately estimating future megadrought risk in the ASW, an ensemble larger than this 

would not be worth the computational expense.   
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3.2 Forced changes in variability? 

As for the ASW, we test whether the statistics of internal variability are unchanged in 

the future using the same analysis as above (Methods section 2.3) but at each grid point 

globally. In many regions the distribution around the mean of 35-year hydroclimate states 

changes in the future, as indicated by the areas with small p-values in Fig. 2a and, more 

generally there is a large degree of spatial heterogeneity in this value. For reference, the null 

hypothesis that the distributions are the same can be rejected for 12% and 6% of grid points 

at the 90th and 95th confidence limits, respectively.  

While a full treatment of the reasons underlying changes to the statistics of internal 

variability in the future is outside the scope of this paper, there are regions with robust 

changes that are worth discussing. For instance, while the distribution around the mean of 35-

year hydroclimate states does not appear to change in the future when averaging over the 

ASW, the California coast and the southern ASW has small p-values in Fig. 2a. For the 

former region this is consistent with expected changes in water season hydroclimate 

(Simpson et al. 2015). The latter region is the portion of the ASW that has summer 

hydroclimate variability driven by the North American Monsoon, and more generally, many 

monsoon regions appear to have changing statistics of internal variability in the future. This 

includes those regions encompassed by the East and West African monsoons, the Indian 

monsoon and the Malaysian-Australian monsoon. These changes are consistent with model-

projected increases in monsoon strength (with increased atmospheric moisture content 

compensating for weakening circulation) and the length of the monsoon season, particularly 

associated with a delay in monsoon retreat (IPCC AR5, Chapter 14—Stocker et al. 2014). 

Another area with a robust change in the statistics of internal variability in the future is the 

subtropics at or near the northern descending branch of the Hadley Cell (e.g. ~30°N in Fig. 

2a). While this is potentially consistent with model-projected weakening and poleward 
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expansion of the Hadley cell (e.g. Lu et al. 2007), it could be related to the use of PDSI, 

which may struggle to represent drought variability over the subtropical deserts. 

 

3.3 Constraining uncertainty in future megadrought risk 

If the distribution around the mean of 35-year hydroclimate states changes in the 

future then we cannot use a perfect model framework to assess error in future megadrought 

risk. We therefore focus on grid points with p-values of more than 0.5 in Fig. 2a (45% of grid 

points globally), as such values indicate a lower likelihood of the statistics of internal 

variability changing in the future. To further simplify interpretation we will also require that 

the analyzed grid points have an increase in megadrought risk in the future (relative to the 

CESM control simulation), and a future megadrought risk that is less than 100%. For these 

grid points, Fig. 2b shows the estimate of future megadrought risk from the LENS and Fig. 2c 

and 2d compares this to future megadrought risk from the perfect model framework.  

Fig. 3a indicates the impact of the size of the ensemble on error by showing the 

number of ensemble members necessary to constrain error to 5 pp in the median (using the 

same methodology as in Fig. 1b). While there is a large degree of spatial heterogeneity in this 

value, there appears to be a straightforward relationship between number of ensemble 

members and future megadrought risk (Fig. 3b). For future megadrought risks greater than 

50%, the number of ensemble members necessary to constrain error to 5 pp in the median 

decreases as future megadrought risk increases, the opposite is true of values less than 50%. 

The reason for this relationship is intuitive: it takes more ensemble members to constrain 

error if attempting to discern differences in probabilities in the center of mass of the statistical 

distribution.  
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Importantly, because future megadrought risk is a function of both the distribution 

around the mean and the change in the mean, this implies that the magnitude of the 

radiatively forced change in the mean is itself a strong control on the number of ensemble 

members necessary to accurately estimate future megadrought risk (Fig 3c).  

In Fig. 3b the same analysis is also completed by randomly subsampling the CESM 

control simulation instead of using surrogate timeseries based on the LENS (the range for the 

randomly sampled CESM control simulation is the shaded region in Fig. 3b). Randomly 

subsampling the CESM control simulation provides an estimate of how many ensemble 

members are necessary to reproduce the distribution of 35-year hydroclimate states that is 

used to define future megadrought risk (in the perfect model framework). By consequence, 

any differences between the shaded region and points in Fig. 3b likely indicates that there are 

changes to the statistics of internal variability in the future at the analyzed grid points (despite 

the relatively large p-values in Fig. 2a). In some cases, these changes increase the number of 

ensemble members necessary to accurately estimate future megadrought risk by nearly two 

times, in part, because the distribution used to define future megadrought risk is not the true 

future distribution of 35-year hydroclimate states.  

4. CONCLUSIONS 

The LENS suggests that even over the near-term decades (2006-2040 C.E.) 

anthropogenic forcing increases megadrought risk in the ASW by 20 pp or at least 100 times 

relative to pre-industrial conditions in a CESM control simulation. Over this same time 

period, anthropogenic forcing can increase megadrought risk in some regions by 100 pp 

(0.5% of grid points—not shown). Although estimated from a single climate model, these 

stark changes in megadrought risk over the near-term decades suggest a need to better 

understand the capability of state-of-the-art climate models to estimate future megadrought 

risk. Along these lines, there are a number of results herein that are generalizable to this 
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question. For starters, the statistics of internal variability within the CESM model changes in 

some regions and not in others—with monsoon regions and the subtropics at or near the 

descending branch of the Hadley Cell in the Northern Hemisphere being notable examples of 

the former. The ASW, however, is a region where the statistics of internal variability appear 

not to change in the future and we can use this behavior to determine the marginal value of 

each ensemble member to accurately estimating future megadrought risk.  

 

We find there is little value beyond 150 ensemble members, suggesting that running 

additional ensemble members is not worth the computational expense when estimating future 

megadrought risk in the ASW. Nevertheless, running 150 ensemble members is already 

beyond the scope of current computational and storage resources and these limitations 

suggest that targets such as constraining error in megadrought risk projections in the ASW to 

5 pp with high confidence is not possible. In a global sense, there is spatial heterogeneity in 

the number of ensemble members necessary to accurately estimate future megadrought risk. 

This heterogeneity is largely explained by differences in the magnitude of the radiatively 

forced shift in mean hydroclimate, thereby providing a strong control on the number of 

ensemble members necessary to accurately estimate future megadrought risk. 

It is important to note that the experiment set up herein is a simple (and likely a 

baseline) estimate for the number of ensemble members necessary to accurately estimate 

future megadrought risk. We have only asked how many ensemble members are necessary to 

constrain the future distribution of 35-year hydroclimate states as defined by the models‟ own 

internal variability superposed on its‟ own forced response.  
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In the real world, the distribution of 35-year hydroclimate states is not known nor is 

the possibility of forcing projecting onto internal modes of variability well defined. Models 

are likewise biased, with these biases being correlated across models, and in the real world 

models are attempting to reproduce a distribution of 35-year hydroclimate states that may be 

inconsistent with their own dynamics—including, and perhaps most importantly, their 

sensitivity to forcing—which is itself uncertain in the future. By consequence, using the 

CMIP5 multi-model ensemble to estimate future megadrought risk represents a much more 

difficult endeavor than the perfect model framework used herein. Additionally, the question 

of how many ensemble members are necessary to sample internal variability will differ 

depending on the climate feature of interest—the results herein only apply to estimating 

future megadrought risk. Nevertheless, the framework introduced herein is generalizable to 

other climate features and further work will be important to better understand how many 

ensemble members are necessary to robustly sample internal variabilit 
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Figure 1: (Panel A) Ten-bin histogram of mean PDSI over the ASW (32°N-41°N; 125°W-

105°W) between 2006-2040 C.E. from the 30 LENS ensemble members with a normal 

distribution fit (red curve). The blue curve in Panel B is the normal distribution fit to all 35-

year periods from the 1100-year CESM control simulation (35-year hydroclimate states) 

shifted by the ensemble mean of the LENS between 2006-2040 C.E. (the distribution was 

originally centered on 0). The distributions are not significantly different based on a two-

sample nonparametric K-S test. (Panel B) Future megadrought risk is defined using all 35-

year hydroclimate states from the CESM control simulation shifted by the mean of the LENS 

between 2006-2040 C.E. (the perfect model framework—blue curve in Panel A). Error (y-

axis) is the difference between this future megadrought risk and the future megadrought risk 

estimated from an ensemble of 35-year surrogate timeseries based on LENS (Methods). The 

surrogate timeseries ensembles are varied in size from 20 to 300 members (# Ensemble 

Members) and each sized ensemble is produced 1000 times. The black circles are the median 

values of error for the 1000 ensembles of each size, with the black line being a third order 

polynomial fit to the median values. The gray shaded regions represent the range of error. For 

instance, the upper bound of the darkest gray shaded region is the third order polynomial fit 

to the 95th percentile of error for each sized ensemble. 
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Figure 2: (Panel A) At each grid point we calculate the p-value from a two-sample K-S test 

between the 35-year hydroclimate states from the CESM control simulation and the 30 35-

year hydroclimate states (2006-2040 C.E.) from the LENS. (Panel B) The error (pp) in future 

megadrought risk from the LENS relative to the perfect model framework and (Panel C) 

estimate of future megadrought risk (2006-2040 C.E.) from the LENS. (Panel B and C) 

Values are only shown at grid points with a p-value greater than 0.5 (Panel A), an increase in 

future megadrought risk (2006-2040 C.E.), and a future megadrought risk (2006-2040 C.E.) 

that is less than 100%: 
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Figure 3: (Panel A) The number of ensemble members necessary to achieve 5 pp error in the 

median using the same analysis as Fig. 1b. (Panel B) The values in Panel A (x-axis) plotted 

against future megadrought risk from the perfect model framework (y-axis). The grey shaded 

region is the range for the same plot but randomly subsampling the CESM control simulation 

to calculate number of ensemble members instead of using surrogate timeseries based on the 

LENS. (Panel C) The values in Panel A (x-axis) plotted against the ensemble mean PDSI of 

the 30 LENS ensemble members between 2006-2040 C.E. (an estimate of the forced response 

to RCP8.5—y-axis). (Panel A, B and C) Values are only shown for grid points with a p-value 

greater than 0.5 in Fig. 2a, an increase in future megadrought risk (2006-2040 C.E.), and a 

future megadrought risk (2006-2040 C.E.) that is less than 100%.  
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The supplementary information contains two additional figures that provided a brief 
validation of the CESM model.  
 
 
 
 
 
 
 
 



 
 
Figure S1. (top left panels) Precipitation climatology from the Global Precipitation 
Climatology Center [GPCC—Rudolf et al., 1994] and temperature climatology from 
Berkeley Earth [Muller et al., 2013] over the ASW as compared to the range in these 
climatologies across the 30 LENS ensemble members for the common period 1920-
2005 C.E. (top right panels) Standard deviation of the precipitation and temperature 
for each month for the common period 1920-2005 C.E. (bottom panels) Correlation of 
annually averaged precipitation and JJA PDSI averaged over the ASW with annually 
averaged global sea surface temperatures (SST) between 1920-2005 C.E. For the 
observations we use the GPCC precipitation, NADA PDSI [Cook et al., 2007] and the 
Hadley Center Ice and Sea Surface Temperature dataset [Rayner et al., 2003]. For the 
models the correlation patterns are calculated for all 30 LENS ensemble members and 
5th and 95th percentile, and mean correlation coefficient at each grid point are plotted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S2. Ten-bin histogram of mean PDSI over the ASW (32°N-41°N; 125°W-105°W) 
for all 35-year periods from the 1100-year CESM control simulation with a normal 
distribution fit (blue curve). 
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Figure S3. Percent change in temperature, surface net radiation, surface pressure, 
evaporation, precipitation, vapor pressure deficit and potential evapotranspiration 
between 2006-2040 C.E. relative to the mean of the pre-industrial control run. The first 
five variables are model outputs while the last two variables are calculated using the 
Penman-Monteith function [Penman, 1948; Xu and Singh, 2002]. The dark gray shaded 
region is the 25

th

 to 75th percentile, the light gray shaded region is the 5th to 95th 
percentile, the whiskers are the full data range and the black line is the mean of the 30 
LENS ensemble members. 
 
 


